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1 Calculus and Newtonian Mechanics

1.1 Kinematics and Calculus

First, let’s define the quantities we currently care about:

Definition 1.1. Position The location of an object in space.

Definition 1.2. Velocity The rate at which an object’s location changes.

Definition 1.3. Acceleration The rate at which an object’s velocity changes.

Note the recursive way these can be defined. Also, keep in mind that these
are vector quantities. We will denote the position of an object as (x, y, z), the
velocity as (vx, vy, vz), etc.
Let’s do some graphing to get a handle on how these quantities are related. We
will stick with a one dimensional system with x, v, and a to keep things simple.
Imagine an object sitting at rest at x = 2m. A plot of it’s position as a function
of time is shown below. Note that v = 0m/s and a = 0m/s2.
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Now consider an ob-
ject moving at a constant speed of 2m/s. A plot of it’s velocity is shown below.
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What does a plot of the object’s position look like? It depends on where the
object started. Here are two possible plots of the positions of objects with the
above velocity.
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Notice that the velocity defined the slope of the position curve but not it’s loca-
tion. You can also see that the position plot describes the (signed) area under
the velocity curve between two times. The red plot describes the area under
the velocity curve between the origin and t, and the blue plot describes the area
under the velocity curve between 2 and t (with sign determined by the direction
relative to 2).
To summarize the velocity (the rate of change of position in time) describes the
slope of position, and the position describes the cumulative effect of velocity
over time. The units even cancel correctly. m = m/s and m/s = m

s .
Now consider constant acceleration, say a = 2m/s2.
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Depending on the initial velocity, this can correspond to different velocity curves.
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What about position? Working on the same intuition that position is the ”area”
under velocity, we can get several plots for each of the velocity curves. I chose
two for each that fit nicely on the same graph.
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You can see that the slope of the position curve at each point in time is the
value of the velocity at that point in time.
We call this a derivative with respect to time. All that means is that the velocity
is the rate of change of position over time.

Definition 1.4. Derivative A derivative with respect to some variable x of some
function f(x) is a function f ′(x) which is equal to the rate of change of f at x.
On a graph, f ′(x) is the slope of f(x). f ′(x) may also be denoted df

dx .

Notice the fraction notation is reminiscent of the formula for finding the
slope of a line m = ∆y

∆x . Indeed, if you zoom in on a regular (this is actually a
term with specific meaning to mathematicians) spot on a graph of a function,
it will look like a line. The derivative is essentially looking at the change after
a very small displacement.
Note that we can have ”higher order derivates”: derivatives of derivatives. We

write this like d
dx

d
dxf(x) = d2

dx2 f(x) = f ′′(x).
There is also a mathematical term for the notion of ”area”. We call this an
integral.

Definition 1.5. Definite Integral A function F (x′) is the integral of f(x) be-
tween x = a and x = x′ if the area under a graph of f(x) versus x between

x = a and x = x′. This is denoted
∫ x′

a
f(x)dx = F (x′)

Definition 1.6. Indefinite Integral If bounds are not specified, the integral of
a function f(x) is a family of functions equivalent up to an additive constant.∫
f(x)dx = F (x) + c with free variable c taking on any value and

∫ x′

a
f(x)dx =

F (x′) for some a.

We can now give a rigorous description of the interplay between slope and
area.

Theorem 1.1. Fundamental Theorem of Calculus
∫ x
a
f ′(x′)dx′ = f(x) + c

Corollary 1.1.1.
∫ b
a
f ′(x) = f(b) − f(a)
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1.2 Properties of Integrals and Derivatives

Now we can start showing how to do arithmetic and algebra with these new
tools. The following properties can be defined rigorously, but we are going to
gloss over such details.
First not the following self-evident properties.

d

dx
(f(x) + g(x)) = f ′(x) + g′(x) (1)∫ b

a

f(x)dx+

∫ c

b

f(x)dx =

∫ c

a

f(x)dx (2)

1.2.1 Derivatives

Theorem 1.2. Product Rule For h(x) = f(x)g(x), h′(x) = f ′(x)g(x)+f(x)g′(x).

Corollary 1.2.1. d
dxax

n = anxn−1

It may not be immediately intuitive that this is the case, but it seems rea-
sonable enough that I will not be concerned with how this can be proved. From
this (and the chain rule defined below), you can derive an equivalent quotient
rule.
Also, by the way, d

dx sin(x) = cos(x) and d
dx cos(x) = − sin(x), which can be

seen by visualizing their graphs.
Okay, so we can take derivatives of functions like sin(x)x2, but what about things
like sin(x2)? These functions can be written as f(g(x)), where f(x) = sin(x)
and g(x) = x2 in this case. Just from the arithmetic of fractions, one might
naively guess that dx

dy
dy
dz = dx

dz for some functions y(z) and x(y(z)). This is
actually correct, which we will not try to actually carefully derive. This is the
chain rule.

Theorem 1.3. Chain Rule For h(x) = f(g(x)), h′(x) = g′(x)f ′(g(x)).

For our example sin(x2), we get 2x cos(x2)

1.2.2 Integrals

There are 1001 fancy integration techniques that are of use in various circum-
stances. We will not worry much about them, but we will need to learn an
important one, integration by parts. It allows us to integrate the product of
two functions where we know the derivative of one and the integral of the other.

We are trying to solve
∫ b
a
f(x)g(x)dx where we know g(x) = h′(x) and we know

f ′(x).
Recall the product rule: d

dx (f(x)h(x)) = f ′(x)h(x) + f(x)h′(x)
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∫ b

a

f(x)g(x)dx =

∫ b

a

(
d

dx
(f(x)h(x)) − f ′(x)h(x))dx

=

∫ b

a

(
d

dx
f(x)h(x))dx−

∫ b

a

f ′(x)h(x)dx

= f(b)h(b) − f(a)h(a) −
∫ b

a

f ′(x)h(x)dx

Introducing bar notation for differences∫ b

a

f(x)h′(x)dx = f(x)h(x)

∣∣∣∣b
a

−
∫ b

a

f ′(x)h(x)dx

1.3 Laws of Mechanics

1.3.1 Newton’s Laws

1. Inertia: An object in motion stays in motion unless acted on by a force.

2. Forces: The acceleration of an object is in the direction of and proportional
to the sum of the forces acting upon it.

3. Equal and opposite action: The force of one object on another is equal
and opposite the force of the latter on the former.

F = ma (3)

1.3.2 Conservation of Energy

Theorem 1.4. Energy Conservation The total energy in an isolated system is
constant.

Definition 1.7. Kinetic Energy A body of mass m and velocity v possesses
energy due to its motion equal to 1

2mv
2.

Definition 1.8. Potential Energy A mechanical system may contain energy
stored in forms other than kinetic energy, usually due to the relative position of
objects. This is called potential energy.

Examples of potential energy include gravitational potential (mgh) and the
energy stored in a spring ( 1

2kx
2 where x is the displacement of the spring from

equilibrium and k is a constant).

1.4 Conservation of Momentum

Definition 1.9. Momentum The vector quantity momentum associated with
an object is p = mv.

Theorem 1.5. Momentum Conservation The total momentum of an isolated
system is constant. This is true for each directional component.
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1.5 Worked Examples and Force Diagrams

I have several examples I aim to cover to demonstrate these concepts and the
tools used to solve them. I have the problems and techniques memorized, and
they are hard to typeset, so I will skip writing them in. You can find these
problems in any intro mechanics textbook. The ones I would like to do are
elastic collisions in 1 dimension, a mass on a ramp with friction, projectile
motion, simple harmonic oscillation of a spring/mass system.
If I have extra time I may do a problem on masses and pulleys or talk about
rotation.

2 Lagrangian and Hamiltonian Mechanics

2.1 Multivariable Calculus

Before we start, we need to get a handle functions of several variables and how to
do basic calculus on these functions. So far we have used functions of one scalar
variable, but we can have functions of vectors or functions of several scalars as
well. These are denoted f(x, y, z...).

2.1.1 Partial Derivatives

Derivatives work essentially the same way for such functions. For each variable
we have a partial derivative denoted like ∂

∂xf(x, y). This is just the expression
we get when we treat all variables but one as constants and take a derivative with
respect to the remaining variable. For example, ∂

∂x (x2 + xy + x3zy2 + y + 4) =

2x+y+3x2zy2. Notation such as ∂f(x,y)
∂x

∣∣∣∣
(1,3)

is used to denote, in this example,

the value of this partial derivative at (x, y) = (1, 3). An important property of

partial derivatives is that ∂
∂x

∂
∂yf(x, y) = ∂

∂y
∂
∂xf(x, y) = ∂2

∂x∂yf(x, y).

2.1.2 Parameterization

Let’s say we have a function f(x, y), where x and y are variables that evolve in
time. f(x(t), y(t) will therefore evolve in time. In this way, a function of several
variables can be treated as a function of one variable if its arguments are all
functions of one variable. For example, f(x, y) = xy x(t) = t2 y(t) = sin(t)
yields f(x(t), y(t)) = t2 sin(t).

2.1.3 Total Derivative

In this example, at what rate does f change in time? We can calculate from
f(x(t), y(t)) = t2 sin(t) that f ′(t) = 2t sin(t) + t2 cos(t). More generally, we also
have the formula:

d

dt
f(x(t), y(t), ...) =

∂f

∂x

dx

dt
+
∂f

∂y

dy

dt
+ ... (4)

It is easy to check that this gives the same answer for our example. This is
known as a total derivative.
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2.1.4 Path Integrals

We can also take the derivative of a parameterized function. This looks like∫ b
a
f(x(t), y(t))dt. This might show up if, for example, f was some function of

an object’s position in the xy plane, and we wanted to sum up that function
along a path taken by the object in the xy plane.

2.2 Lagrangian Mechanics

2.2.1 The Principle of Least Action

There is one such path integral that will be very useful. It is called the action.
First, note that the kinetic energy of a system is a function of the velocities of its
individual parts, and the potential energy is a function of time and the positions
of the individual parts (and technically sometimes the velocities). Therefore,
the Lagrangian, as defined below, is a function of the positions and velocities of
the parts of a system.

Definition 2.1. Lagrangian The Lagrangian of a system is the difference be-
tween the total kinetic and potential energies of the system. It is denoted
L=T-U.

So for a system with one degree of freedom, the Lagrangian will look like
L(q, q̇, t), where q is that one degree of freedom, and q̇ is the rate of change of
this variable, its ”velocity”. q can be the position of a particle, but it also can
be any other variable that specifies the state of the system. This is what we
mean by a degree of freedom. A system with several degrees of freedom would
have a Lagrangian denoted L(q1, q2..., q̇1, q̇2, ..., t) or more succinctly L(~q, ~̇q, t),
where the vectors are just lists of degrees of freedom. Now that we have that
out of the way, we can define the action.

Definition 2.2. Action For a motion of a system specified by some path ~q(t),
the action of the motion is the path integral of the Lagrangian along this motion.

S[q(t)] =
∫ b
a
L(~q(t), ~̇q(t), t)dt.

The action is what we call a functional, a function of functions. It take some
function q(t) and spits out a number. Ok now the good part.

Theorem 2.1. Hamilton’s Principle of Least Action The path taken by a sys-
tem with Lagrangian L(~q, ~̇q, t) will be some ~q(t) such that the action S[q(t)] =∫ b
a
L(~q(t), ~̇q(t), t)dt is minimized.

This may seem somewhat arbitrary right now, but we will see shortly that
this is an elegant and powerful tool for understanding mechanics problems.

2.2.2 Aside: Extrema of Functions

Before we continue, let’s get a handle on what we mean by minimization. For
simplicity, we will only care about continuous smooth functions. Consider the
function plotted below.
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We can see that is has a maximum at x = 5 and a minimum at x = −2. If we
only consider the domain (−3, 6), we can say that it has a global maximum at
x = 5 and global minimum at x = −2. Now consider x = 1. There is a region
around this point where f(x) ≥ f(1) for any x in the region. We can therefore
call x = 1 a local minimum. Similarly, x = 3 is a local maximum.
Notice that, at any extremum (maximum or minimum), the slope of the function
is zero. In other words, f ′(x) = 0. This is an important property of continuous
functions; their derivatives are zero at extrema.

2.2.3 The Euler-Lagrange Equations

We now have a useful property for the motion of a system. The derivative of
the action will be zero for the path taken by the system. But wait, the action
is a functional, taking functions as its input. What can we possibly mean by a
derivative of a functional. It turns out functional derivatives can be well defined,
which is a topic in the ”calculus of variations”, a slippery topic we will not delve
too far into.
However, we can make an intuitive argument that will get us far enough. Let
some path q(t) (dropping vector notation for my own sanity) minimize the
action of our system for some motion from q(0) = 0 to q(a) = b. Now, take
some arbitrary continuous function f(t) such that f(0) = f(a) = 0. Consider
the path q̃(t) = q(t) + αf(t). Since f is conveniently zero at the endpoints,
picking different values of f can give us any path from (0, 0) to (a, b). For
any f , picking an arbitrarily small α will make q̃(t) arbitrarily close to q(t). (I
seriously hope I try to draw this.)
Now, consider S[q̃(α, t)] as being a function of α. S[q(t)] takes a path and gives
a number, and q̃(α, t) can be thought of as taking a number α and spitting out
a path. So, we can think of S[q̃(α, t)] as taking a number α and spitting out a
number.We can then even take the derivative of S[q̃(α, t)] with respect to α.
If q(t) locally minimizes the action, it must be the case that S[q̃(α, t)] ≥ S[q(t)]
for small values of α. In other words, S[q̃(α, t)] has a local minimum at α = 0,

and therefore dS[q̃(α,t)]
dα

∣∣∣∣
α=0

= 0.
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Let’s now expand that last expression (dropping the tilde).

0 =
dS[q̃(α, t)]

dα

∣∣∣∣
α=0

=
d

dα

∫ a

0

L(q(t, α), q̇(t, α), t)dt

We can push the derivative inside the integral since the limits of the integral
are fixed, and the integral is not over α.

=

∫ a

0

d

dα
L(q(t, α), q̇(t, α), t)dt

Expanding this as a total derivative, noting t is independent of α

=

∫ a

0

(
∂L

∂q

∂q

∂α
+
∂L

∂q̇

∂q̇

∂α
)dt

=

∫ a

0

(
∂L

∂q
f(t) +

∂L

∂q̇

df

dt
)dt

We can integrate the second term by parts.

=
∂L

∂q̇
f(t)

∣∣∣∣a
0

+

∫ a

0

(
∂L

∂q
f(t) − (

d

dt

∂L

∂q̇
)f(t))dt

The first term drops since f(0) = f(a) = 0.

=

∫ a

0

(
∂L

∂q
f(t) − (

d

dt

∂L

∂q̇
)f(t))dt

0 =

∫ a

0

(
∂L

∂q
− (

d

dt

∂L

∂q̇
))f(t)dt

This only holds for arbitrary f(t) if:

∂L

∂qi
− (

d

dt

∂L

∂q̇i
) = 0 (5)

The i subscripts mean that this equation holds separately for each degree of
freedom of the system, indexed by i. If you look carefully, the previous derivation
works whether q and q

dq are scalars or vectors.
These are the Euler-Lagrange Equations. For each degree of freedom of
a system, they give a differential equation which specifies the motion of that
degree of freedom. This is a very powerful and flexible tool. Given just the
Lagrangian of a system (defined in whatever coordinates are most convenient),
we can fully describe its behavior. Hopefully this will become clear in the
following examples.

2.2.4 Example Problems

Once again, I have problems memorized which would be quite arduous to write
out here. In class I will probably do a hoop on a ramp and maybe two couple
oscillators.
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2.3 Hamiltonian Mechanics

2.3.1 Conjugate Momenta and the Hamiltonian

Notice that kinetic energy terms generally look something like 1
2mq̇

2. For ex-
ample, translational and rotational kinetic energy: 1

2mv
2, 1

2Iω
2. Also, in most

systems anyway, the potential energy is not dependent on velocities. So, usu-
ally, for some Lagrangian with a degree of freedom qj ,

∂L
∂q̇j

= mq̇. If q were a

cartesian position of a particle, then this would be the momentum of the particle
along this coordinate. We can define a generalized momentum corresponding to
some generalized position qj to be

pj =
∂L

∂q̇j
(6)

In the case of a position variable that is actually a cartesian position of a particle,
the conjugate momentum is the actual momentum of that particle along that
coordinate. In the case of a variable describing the angular orientation of an
object about some axis, the conjugate momentum is the angular momentum
of that object along that axis. Substituting into the Euler-Lagrange Equation
gives us:

ṗj =
∂L

∂qj
(7)

Solving (6) allows us to think of our velocities as functions of positions, mo-
menta, and time q̇j(qk, pk, t). Then we can define the Hamiltonian, a function
of positions, momenta, and time.

H(qk, pk, t) =
∑
j

pj q̇j(qk, pk, t) − L(qk, q̇j(qk, pk, t), t) (8)

Notice that H = T + U for usual systems.

2.3.2 Hamilton’s Equations

We are now set to derive a new set of equations equivalent to the Euler-Lagrange
equations.

Taking the total time derivative of H:

dH

dt
=
∑
k

(
∂H

∂qk

dqk
dt

+
∂H

∂pk

dpk
dt

) +
∂H

∂t

From (8), we can also derive:

dH

dt
=
∑
k

(q̇k
dpk
dt

+ pk
dqk
dt

− ∂L

∂qk

dqk
dt

− ∂L

∂q̇k

dq̇k
dt

) − ∂L

∂t
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Making substitutions in the third and fourth term then cancelling the second
and fourth

dH

dt
=
∑
k

(q̇k
dpk
dt

− ṗk
dqk
dt

) − ∂L

∂t

Equating like terms in the first and last expression gives us Hamilton’s equa-
tions.

q̇k =
∂H

∂pk
; ṗk = −∂H

∂qk
(9)

Substituting these into the final expression and cancelling gives us:

dH

dt
=
∂H

∂t
(10)

This tells us that if H does not explicitly dependent on t, then it is a conserved
quantity. Noting that usually H = T +U , the Hamiltonian can be thought of as
the total energy of a system, and we just derived conservation of energy starting
only the Principle of Least Action.

2.3.3 Worked Examples

Now that we have yet another tool set, let’s solve some problems. In class I
will likely do coupled oscillators again, and maybe a spherical pendulum (nice
conservation of angular momentum example).

3 Geometric Methods

I decided to write this by hand because I will have to draw a lot and typesetting
takes forever.
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